
A NEW LOOK AT TEST-DRIVEN DEVELOPMENT

Dave Astels

dastels@daveastels.com

A S T E L S C O N S U L T I N G

1 9 R a n d S t . , H a n t s p o r t , N o v a S c o t i a , C a n a d a B 0 P 1 P 0 • c e l l : 9 0 2 . 6 9 1 . 2 3 3 4 • f a x : 9 0 2 . 6 8 4 . 0 9 2 3 •

w w w. d a v e a s t e l s . c o m

The Problem

Test Driven Development (TDD) has made it to prime time. Big companies are paying big

money to have their programmers trained in how to do TDD. It's a popular topic at confer-

ences... agile and otherwise. There are a score of books available on TDD, mine even won a Jolt

award. So it seems that everything is rosy? Everyone who's doing TDD is fully understanding it

and getting the full benefit, right?

Fat Chance!

Too few people I talk to really understand what it's really about. That means that many people

who practice TDD are not getting the full benefit from it. What's wrong?

The focus on testing

Well... one thing is that people think it's about testing. That's just not the case.

Sure, there are similarities, and you end up with a nice low level regression suite... but those are

coincidental or happy side effects. So why have things come to this unhappy state of affairs? Why

do so many not get it? Let’s start with a bit of a history lesson. A few years ago I wrote an arti-

cle on TDD for The Coad Letter1. In it I gave some background on TDD (from Ron Jeffries):

"XP originally had the rule to test everything that could possibly break. Now, however, the

practice of testing in XP has evolved into Test-Driven Development."

So way back when, they were talking about writing tests. And that's probably why it has the

testing centric vocabulary, and that is why people think it's about testing! What else would they

think when they have to talk about TestCases & TestSuites, & Tests.. and have to name

methods starting with "test". Granted, not all the xUnit frameworks have these requirements.

 The new version of jUnit (version 4) gets away from the naming conventions and reliance on

subclassing TestCase but the rest of the vocabulary stays and the annotations used are test-

centric

The thing is, when the evolution to TDD happened what we ended up with was a different kind

of animal... not just a slight tweak on the original. The original XP folks were writing tests for

everything that could break, then they started writing the tests first. Eventually we ended up at

TDD where we write a small test to describe a small bit of new functionality, then code it, then

1

1 http://bdn.borland.com/article/0,1410,29690,00.html “What is Test-Driven Development?”

write the next small test, and so on. But TDD is not the endpoint a lot of people seem to think

it is... it's just a stepping-stone.

Units

Also, the idea of "unit" is a major problem. First of all it's a vague term, and second it implies a

structural division of the code (i.e. people think that they have to test methods or classes). We

shouldn't be thinking about units... we should be thinking about facets of behaviour.

Thinking about unit testing leads us to divide tests in a way that reflects the structural arrange-

ment of the code. For example, having text classes and production classes in a 1-1 relationship

That's not what we want... we want behavioural divisions.. we want to work at a level of granu-

larity much smaller than that of the typical unit test. As I've said before when talking about TDD,

we should be working with very small, focused pieces of behaviour... one small aspect of a single

method. Things like "after the add() method is called with an object when the list is empty, there

should be one thing in the list". The method is being called in a very specific context, often with

very specific argument, and with a very specific outcome. I even went so far as to write a blog

entry titled “One Assert Per Test”2.

So, there you have it. A fabulous idea... wrapped in packaging that causes people to think from a

testing point of view.

The Result

Why is this a problem? Let's think for a minute about how people often think about testing.

Programmers often think "I'm not going to write all those tests.", "It's really simple code, it doesn't

need to be tested", "testing is a waste of time", or "I've done this (loop/data retrieval/functionalty, etc)

millions of times.".

Project managers often think "we test after the code is done", "that's what we have a testing person

for", or "we can't spend that time now".

So with people thinking about testing, it's easy to come up with all sorts of negative reactions

and reasons not to do it... especially when time gets short and the pressure's on.

2

2 http://blog.daveastels.com/?p=3

So if it's not about testing, what's it about?

It's about figuring out what you are trying to do before you run off half-cocked to try to do it.

You write a specification that nails down a small aspect of behaviour in a concise, unambiguous,

and executable form. It's that simple. Does that mean you write tests? No. It means you write

specifications of what your code will have to do. It means you specify the behaviour of your

code ahead of time. But not far ahead of time. In fact, just before you write the code is best be-

cause that's when you have as much information at hand as you will up to that point. Like well

done TDD, you work in tiny increments... specifying one small aspect of behaviour at a time,

then implementing it.

When you realize that it's all about specifying behaviour and not writing tests, your point of

view shifts. Suddenly the idea of having a Test class for each of your production classes is ridicu-

lously limiting. And the thought of testing each of your methods with its own test method (in a

1-1 relationship) will be laughable.

Sapir-Whorf hypothesis

First some background, courtesy of Wikipedia3:

The axiom that language has controlling effects upon thought can be traced to Wil-

helm von Humboldt's essay "Über das vergleichende Sprachstudium", and the notion

has been largely assimilated into Western thought. Karl Kerenyi began his 1976 Eng-

lish language translation of Dionysus with this passage:

"The interdependence of thought and speech makes it clear that languages are not so

much a means of expressing truth that has already been established as means of discov-

ering truth that was previously unknown. Their diversity is a diversity not of sounds and

signs but of ways of looking at the world."

The hypothesis upon which I am basing my argument is named after the linguist and anthro-

pologist Edward Sapir and his colleague and student Benjamin Whorf. It states that

“there is a systematic relationship between the grammatical categories of the language a

person speaks and how that person both understands the world and behaves in it.”

For my purposes that means that the language you use shapes how you think... and if you want

to change how you think it can help to first change your language.

3

3http://en.wikipedia.org/wiki/Sapir-Whorf_hypothesis

So what to do?

First stop thinking in terms of tests. As Bob Martin has been saying for a few years “Specifica-

tion, not Verification”. What Bob means is that verification (aka testing) is all about making sure

(i.e. verifying) that your code functions correctly while specification is all about defining what it

means (i.e. specifying) for your code to function correctly.

Using something like xUnit makes this hard, due to it’s testing-centric language, so we need to

start with a new framework for specifying behaviour. Dan North of ThoughtWorks has started

the jBehave project to do just this. I and a few others are responsible for a behaviour specifica-

tion framework for Ruby called rSpec, which we will explore in more detail below.

A Behaviour Specification Framework

So what does a behaviour specification look like? Well, a first pass will look and work a lot like

xUnit since:

• it works quite well enough

• everyone is familiar with it

A major difference is vocabulary. Instead of subclassing TestCase, you subclass Context.

Instead of writing methods that start with test, you start them with should. It would be

preferable that you don’t have to worry about a naming pattern so you can choose the most

appropriate name. Instead of doing verification with assertions (e.g. assertEquals(ex-

pected, actual)) you specify post conditions with something like shouldBeE-

qual(actual, expected).

In Smalltalk, and Ruby, this can be even more natural if we embed the framework into the class

library (a common approach in Smalltalk, by the way). You could write something like the exam-

ples shown in the following table:

JUNIT SBSPEC RSPEC

assertEquals(expected, actual) actual shouldEqual: expected actual.should_equal expected

assertNull(result) result shouldBeNil result.should_be_nil

4

JUNIT SBSPEC RSPEC

try {
 2 / 0;
 fail();

} catch (DivideByZero ex) {
}

[2 / 0] shouldThrow: DivideByZero {2 / 0}.should_throw DivideByZero

What Now?

As mentioned above, Dan North has started the jBehave project to create a jUnit replacement

for behaviour specification that you can download and experiment with now.

If you are using Ruby, you can get our rSpec framework and start using it. At the time of this

writing rSpec provides the following methods which can be called on any object... take note of

that.. ANY OBJECT:

‣ should_equal(expected)

‣ should_not_equal(expected)

‣ should_be_same_as(expected)

‣ should_not_be_same_as(expected)

‣ should_match(expected)

‣ should_not_match(expected)

‣ should_be_nil()

‣ should_not_be_nil()

‣ should_be_empty()

‣ should_not_be_empty()

‣ should_include(sub)

‣ should_not_include(sub)

‣ should_be_true()

‣ should_be_false()

5

All expectation methods will take an optional, trailing message parameter. Methods setup and

teardown are available for overriding as in xUnit. They work the same and do the same thing.

So what does a behaviour specification look like? Well, here’s the example from my TDD book,

reworked for rSpec:

require 'spec'
require 'movie'
require 'movie_list'

class EmptyMovieList < Spec::Context

 def setup
 @list = MovieList.new
 end

 def should_have_size_of_0
 @list.size.should_equal 0
 end

 def should_not_include_star_wars
 @list.should_not_include "Star Wars"
 end

end

class OneMovieList < Spec::Context

 def setup
 @list = MovieList.new
 star_wars = Movie.new "Star Wars"
 @list.add star_wars
 end

 def should_have_size_of_1
 @list.size.should_equal 1
 end

 def should_include_star_wars
 @list.should_include "Star Wars"
 end

end

6

Guidelines

Name your Context classes by what they are focused on: EmptyMovieList and One-

MovieList, for example. They contain only specification method directly related to that con-

text.

Name your specification methods by the focus of that specification, e.g.

should_have_size_of_0.

Together, the names of the Context class and expectation method should read well, to tell you

exactly with is going on: EmptyMovieList.should_have_size_of_0. Just think of

how easy it would be to extract a specification document from this.

Your specification methods should be as simple, short, and focused as you can make them. One

expectation... excellent... that should be your holy grail. Simple is good. It’s far better to have

lots of small, simple, focused, understandable classes and methods than fewer large, bloated

classes and long, complex methods.

Summary

• The problem I have with TDD is that its mindset takes us in a different direction... a wrong

direction.

• We need to start thinking in terms of behavior specifications, not verification tests.

• The value of doing this will be thinking more clearly about each behaviour, relying less on

testing by class or by method, and having better executable documentation.

• Since TDD is what it is, and everyone isn't about to change their meaning of that name (nor

should we expect them to or want them to), we need a new name for this new way of work-

ing, which Dan North has given us... BDD: Behaviour Driven Development.

Acknowledgements

My thanks go out to Steven Baker, Gabriel Bauman, and Aslak Hellesoy for taking the first ver-

sion of this article and starting work on a ruby framework to make the ideas concrete. Thanks

to Kay Pentecost for her ideas on test-avoidance as well as feedback on draft versions.

7

